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                                                    UNIT - I Digital Systems and Binary Numbers  
 
Introduction  
 
A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from 
one state  to the next.  The states of a digital computer typically involve binary digits which 
may take the form of the presence or absence of magnetic markers in a storage medium , on-
off switches or relays. In digital computers, even letters, words and whole texts are 
represented digitally. 
 
Digital Logic is the basis of electronic systems, such as computers and cell phones. Digital Logic 
is rooted in binary code, a series of zeroes and ones each having an opposite value. This system 
facilitates the design of electronic circuits that convey information, including logic gates. Digital 
Logic gate functions include and, or and not. The value system translates input signals into 
specific output. Digital Logic facilitates computing, robotics and other electronic applications. 
 
Digital Logic Design is foundational to the fields of electrical engineering and computer 
engineering. Digital Logic designers build complex electronic components that use both 
electrical and computational characteristics. These characteristics may involve power, current, 
logical function, protocol and user input. Digital Logic Design is used to develop hardware, such 
as circuit boards and microchip processors. This hardware processes user input, system 
protocol and other data in computers, navigational systems, cell phones or other high-tech 
systems 

 
 

Digital Systems 
 
²ƛǘƘ ǘƻŘŀȅΩǎ 5ƛƎƛǘŀƭ ŀƎŜ ŀƴŘ ƛƴŦƻǊƳŀǘƛƻƴ ŀƎŜΣ  ǳƴŘŜǊǎǘŀƴŘƛƴƎ  digital systems is becoming very 
much important. 
Digital systems have such a prominent role in everyday life that we refer to the present 
technological period as the digital age 
Digital computers are General purposes, Many scientific, industrial and commercial 
applications. Digital systems are Telephone switching exchanges Digital camera Electronic 
calculators, PDA's, Digital TV and Discrete information-processing systems. 
Digital systems are used in communication, 
business transactions 
traffic control 
spacecraft guidance 
medical treatment, 
weather monitoring 
the Internet, 
and many other commercial, industrial, and scientific enterprises. 
We have digital telephones, 
digital televisions, 
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digital versatile discs, 
digital cameras, handheld devices, and, of course, digital computers. 
 

²ƛǘƘ ǘƻŘŀȅΩǎ 5ƛƎƛǘŀƭ ŀƎŜ ŀƴŘ ƛƴŦƻǊƳŀǘƛƻƴ ŀƎŜΣ  ǳƴŘŜǊǎǘŀƴŘƛƴƎ  ŘƛƎƛǘŀƭ ǎȅǎǘŜƳǎ ƛǎ ōŜŎƻƳƛƴƎ ǾŜǊȅ ƳǳŎƘ 
important. 
Digital computers 

ï General purposes 
ï Many scientific, industrial and commercial applications 

Å Digital systems 
ï Telephone switching exchanges 
ï Digital camera 
ï Electronic calculators, PDA's 
ï Digital TV 

Å Discrete information-processing systems 
ï Manipulate discrete elements of information 
ï CƻǊ ŜȄŀƳǇƭŜΣ ϑмΣ нΣ оΣ Χϒ ŀƴŘ ϑ!Σ .Σ /Σ Χϒ 

 
Å Analog system 

ï The physical quantities or signals may vary continuously over a specified range. 
Å Digital system 

ï The physical quantities or signals can assume only discrete values. 
ï Greater accuracy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

ǘ 

·όǘύ 

ǘ 

·όǘύ 

!ƴŀƭƻƎ ǎƛƎƴŀƭ 5ƛƎƛǘŀƭ ǎƛƎƴŀƭ 
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Binary Digital Signal 

An information variable represented by physical quantity. 

Å For digital systems, the variable takes on discrete values. 

ï Two level, or binary values are the most prevalent values. 

Å Binary values are represented abstractly by: 

ï Digits 0 and 1 

ï Words (symbols) False (F) and True (T) 

ï Words (symbols) Low (L) and High (H)  

ï And words On and Off 

Å  

 

 

 

 

 

 

 

NUMBER SYSTEM & BOOLEAN ALGEBRA 

A digital system can understand positional number system only where there are a few symbols called digits and these 

symbols represent different values depending on the position they occupy in the number. 

A value of each digit in a number can be determined using 

ǘ 

.ƛƴŀǊȅ ŘƛƎƛǘŀƭ ǎƛƎƴŀƭ 

[ƻƎƛŎ м 

[ƻƎƛŎ л 

ǳƴŘŜŦƛƴŜ 
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¶ The digit 

¶ The position of the digit in the number 

¶ The base of the number system (where base is defined as the total number of digits available in the number 

system). 

Decimal Number System 
The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 

10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point 

represents units, tens, hundreds, thousands and so on. 

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 

4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value 

can be written as 

(1×1000) + (2×100) + (3×10) + (4×l) 

(1×103) + (2×102) + (3×101)  + (4×l00) 

1000 + 200 + 30 + 1 

1234 

As a computer programmer or an IT professional, you should understand the following number systems which are 

frequently used in computers. 

S.N. Number System & Description 

1 Binary Number System Base 2. Digits used: 0, 1 

2 Octal Number System Base 8. Digits used: 0 to 7 

3 Hexadecimal Number System Base 16. Digits used: 0 to 9, Letters used: A- F 

Binary Number System 
Characteristics 

¶ Uses two digits, 0 and 1. 

¶ Also called base 2 number system 

¶ Each position in a binary number represents a 0 power of the base (2). Example: 20 
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¶ Last position in a binary number represents an x power of the base (2). Example: 2x where x represents the last 

position - 1. 

Example 

Binary Number: 101012 

/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Decimal Number 

Step 1 101012 ((1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10 

Step 2 101012 (16 + 0 + 4 + 0 + 1)10 

Step 3 101012 2110 

Note: 101012 is normally written as 10101. 

Octal Number System 
Characteristics 

¶ Uses eight digits, 0,1,2,3,4,5,6,7. 

¶ Also called base 8 number system 

¶ Each position in an octal number represents a 0 power of the base (8). Example: 80 

¶ Last position in an octal number represents an x power of the base (8). Example: 8x where x represents the last 

position - 1. 

Example 

hŎǘŀƭ bǳƳōŜǊ ҍ мнртл8 

/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Octal Number Decimal Number 

Step 1 125708 ((1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 80))10  
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Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10 

Step 3 125708 549610 

Note: 125708 is normally written as 12570. 

Hexadecimal Number System 
Characteristics 

¶ Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. 

¶ Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. 

¶ Also called base 16 number system. 

¶ Each position in a hexadecimal number represents a 0 power of the base (16). Example 160. 

¶ Last position in a hexadecimal number represents an x power of the base (16). Example 16x where x represents 

the last position - 1. 

9ȄŀƳǇƭŜ ҍ 

Hexadecimal Number: 19FDE16 

/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Decimal Number 

Step 1 19FDE16 ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10 

Step 2 19FDE16 ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10 

Step 3 19FDE16 (65536 + 36864 + 3840 + 208 + 14)10 

Step 4 19FDE16 10646210 

bƻǘŜ ҍ 19FDE16 is normally written as 19FDE. 

There are many methods or techniques which can be used to convert numbers from one base to another. We'll 

ŘŜƳƻƴǎǘǊŀǘŜ ƘŜǊŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ҍ 
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¶ Decimal to Other Base System 

¶ Other Base System to Decimal 

¶ Other Base System to Non-Decimal 

¶ {ƘƻǊǘŎǳǘ ƳŜǘƘƻŘ ҍ .ƛƴŀǊȅ ǘƻ hŎǘŀƭ 

¶ {ƘƻǊǘŎǳǘ ƳŜǘƘƻŘ ҍ Octal to Binary 

¶ {ƘƻǊǘŎǳǘ ƳŜǘƘƻŘ ҍ .ƛƴŀǊȅ ǘƻ IŜȄŀŘŜŎƛƳŀƭ 

¶ {ƘƻǊǘŎǳǘ ƳŜǘƘƻŘ ҍ IŜȄŀŘŜŎƛƳŀƭ ǘƻ .ƛƴŀǊȅ 

Decimal to Other Base System 
Steps 

¶ Step 1 ҍ 5ƛǾƛŘŜ ǘƘŜ ŘŜŎƛƳŀƭ ƴǳƳōŜǊ ǘƻ ōŜ ŎƻƴǾŜǊǘŜŘ ōȅ ǘƘŜ ǾŀƭǳŜ ƻŦ ǘƘŜ ƴŜǿ ōŀǎŜΦ 

¶ Step 2 ҍ DŜǘ ǘƘŜ ǊŜƳŀƛƴŘŜǊ ŦǊƻƳ {ǘŜǇ м ŀǎ ǘƘŜ ǊƛƎƘǘƳƻǎǘ ŘƛƎƛǘ όƭŜŀǎǘ ǎƛƎƴƛŦƛŎŀƴǘ ŘƛƎƛǘύ ƻŦ ƴŜǿ ōŀǎŜ ƴǳƳōŜǊΦ 

¶ Step 3 ҍ 5ƛǾƛŘŜ ǘƘŜ ǉǳƻǘƛŜƴǘ ƻŦ ǘƘŜ ǇǊŜǾƛƻǳǎ ŘƛǾƛŘŜ ōȅ ǘƘŜ ƴŜǿ ōŀǎŜΦ 

¶ Step 4 ҍ wŜŎƻǊŘ ǘƘŜ ǊŜƳŀƛƴŘŜǊ ŦǊƻƳ {ǘŜǇ о ŀǎ ǘƘŜ ƴŜȄǘ ŘƛƎƛǘ όǘƻ ǘƘŜ ƭŜŦǘύ ƻŦ ǘƘŜ ƴŜǿ ōŀǎŜ ƴǳƳōŜǊΦ 

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3. 

The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base number. 

9ȄŀƳǇƭŜ ҍ 

Decimal Number: 2910 

/ŀƭŎǳƭŀǘƛƴƎ .ƛƴŀǊȅ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Operation Result Remainder 

Step 1 29 / 2 14 1 

Step 2 14 / 2 7 0 

Step 3 7 / 2 3 1 

Step 4 3 / 2 1 1 



11 
 

Step 5 1 / 2 0 1 

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder 

becomes the Least Significant Digit (LSD) and the last remainder becomes the Most Significant Digit (MSD). 

5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2. 

Other Base System to Decimal System 
Steps 

¶ Step 1 ҍ 5ŜǘŜǊƳƛƴŜ ǘƘŜ ŎƻƭǳƳƴ όǇƻǎƛǘƛƻƴŀƭύ ǾŀƭǳŜ ƻŦ ŜŀŎƘ ŘƛƎƛǘ όǘƘƛǎ ŘŜǇŜƴŘǎ ƻƴ ǘƘŜ Ǉƻǎƛǘƛƻƴ ƻŦ ǘƘŜ ŘƛƎƛǘ ŀƴŘ 

the base of the number system). 

¶ Step 2 ҍ aǳƭǘƛǇƭȅ ǘƘŜ ƻōǘŀƛƴŜŘ ŎƻƭǳƳƴ ǾŀƭǳŜǎ όƛƴ {ǘŜǇ мύ ōȅ ǘƘŜ ŘƛƎƛǘǎ ƛƴ ǘƘŜ ŎƻǊǊesponding columns. 

¶ Step 3 ҍ {ǳƳ ǘƘŜ ǇǊƻŘǳŎǘǎ ŎŀƭŎǳƭŀǘŜŘ ƛƴ {ǘŜǇ нΦ ¢ƘŜ ǘƻǘŀƭ ƛǎ ǘƘŜ ŜǉǳƛǾŀƭŜƴǘ ǾŀƭǳŜ ƛƴ ŘŜŎƛƳŀƭΦ 

Example 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2 

/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Decimal Number 

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10 

Step 2 111012 (16 + 8 + 4 + 0 + 1)10 

Step 3 111012 2910 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2 Ґ 5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 

Other Base System to Non-Decimal System 
Steps 

¶ Step 1 ҍ /ƻƴǾŜǊǘ ǘƘŜ ƻǊƛƎƛƴŀƭ ƴǳƳōŜǊ ǘƻ ŀ ŘŜŎƛƳŀƭ ƴǳƳōŜǊ όōŀǎŜ млύΦ 

¶ Step 2 ҍ /ƻƴǾŜǊǘ ǘƘŜ ŘŜŎƛƳŀƭ ƴǳƳōŜǊ ǎƻ ƻōǘŀƛƴŜŘ ǘƻ ǘƘŜ ƴŜǿ ōŀǎŜ ƴǳƳōŜǊΦ 
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Example 

hŎǘŀƭ bǳƳōŜǊ ҍ нр8 

/ŀƭŎǳƭŀǘƛƴƎ .ƛƴŀǊȅ 9ǉǳƛǾŀƭŜƴǘ ҍ 

{ǘŜǇ м ҍ /ƻƴǾŜǊǘ ǘƻ 5ŜŎƛƳŀƭ 

Step Octal Number Decimal Number 

Step 1 258 ((2 × 81) + (5 × 80))10 

Step 2 258 (16 + 5 )10 

Step 3 258 2110 

hŎǘŀƭ bǳƳōŜǊ ҍ нр8 Ґ 5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нм10 

{ǘŜǇ н ҍ /ƻƴǾŜǊǘ 5ŜŎƛƳŀƭ ǘƻ .ƛƴŀǊȅ 

Step Operation Result Remainder 

Step 1 21 / 2 10 1 

Step 2 10 / 2 5 0 

Step 3 5 / 2 2 1 

Step 4 2 / 2 1 0 

Step 5 1 / 2 0 1 

5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нм10 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

hŎǘŀƭ bǳƳōŜǊ ҍ нр8 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

Shortcut method - Binary to Octal 
Steps 

¶ Step 1 ҍ 5ƛǾƛŘŜ ǘƘŜ ōƛƴŀǊȅ ŘƛƎƛǘǎ ƛƴǘƻ ƎǊƻǳǇǎ ƻŦ ǘƘǊŜŜ όǎǘŀǊǘƛƴƎ ŦǊƻƳ ǘƘŜ ǊƛƎƘǘύΦ 

¶ Step 2 ҍ /ƻƴǾŜǊǘ ŜŀŎƘ ƎǊƻǳǇ ƻŦ ǘƘǊŜŜ ōƛƴŀǊȅ ŘƛƎƛǘǎ ǘƻ ƻƴŜ ƻŎǘŀƭ ŘƛƎƛǘΦ 
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Example 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

/ŀƭŎǳƭŀǘƛƴƎ hŎǘŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Octal Number 

Step 1 101012 010 101 

Step 2 101012 28 58 

Step 3 101012 258 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 Ґ hŎǘŀƭ bǳƳōŜǊ ҍ нр8 

Shortcut method - Octal to Binary 
Steps 

¶ Step 1 ҍ /ƻƴǾŜǊǘ ŜŀŎƘ ƻŎǘŀƭ ŘƛƎƛǘ ǘƻ ŀ о ŘƛƎƛǘ binary number (the octal digits may be treated as decimal for this 

conversion). 

¶ Step 2 ҍ /ƻƳōƛƴŜ ŀƭƭ ǘƘŜ ǊŜǎǳƭǘƛƴƎ ōƛƴŀǊȅ ƎǊƻǳǇǎ όƻŦ о ŘƛƎƛǘǎ ŜŀŎƘύ ƛƴǘƻ ŀ ǎƛƴƎƭŜ ōƛƴŀǊȅ ƴǳƳōŜǊΦ 

Example 

hŎǘŀƭ bǳƳōŜǊ ҍ нр8 

/ŀƭŎǳƭŀǘƛƴƎ .ƛƴŀǊȅ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Octal Number Binary Number 

Step 1 258 210 510 

Step 2 258 0102 1012 

Step 3 258 0101012 

hŎǘŀƭ bǳƳōŜǊ ҍ нр8 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

Shortcut method - Binary to Hexadecimal 
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Steps 

¶ Step 1 ҍ 5ƛǾƛŘŜ ǘƘŜ ōƛƴŀǊȅ ŘƛƎƛǘǎ ƛƴǘƻ ƎǊƻǳǇǎ ƻŦ ŦƻǳǊ όǎǘŀǊǘƛƴƎ ŦǊƻƳ ǘƘŜ ǊƛƎƘǘύΦ 

¶ Step 2 ҍ /ƻƴǾŜǊǘ ŜŀŎƘ ƎǊƻǳǇ ƻŦ ŦƻǳǊ ōƛƴŀǊȅ ŘƛƎƛǘǎ ǘƻ ƻƴŜ ƘŜȄŀŘŜŎƛƳŀƭ ǎȅƳōƻƭΦ 

Example 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

/ŀƭŎǳƭŀǘƛƴƎ ƘŜȄŀŘŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Hexadecimal Number 

Step 1 101012 0001 0101 

Step 2 101012 110 510 

Step 3 101012 1516 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 Ґ IŜȄŀŘŜŎƛƳŀƭ bǳƳōŜǊ ҍ мр16 

Shortcut method - Hexadecimal to Binary 
Steps 

¶ Step 1 ҍ /ƻƴǾŜǊǘ ŜŀŎƘ ƘŜȄŀŘŜŎƛƳŀƭ ŘƛƎƛǘ ǘƻ ŀ п ŘƛƎƛǘ ōƛƴŀǊȅ ƴǳƳōŜǊ όǘƘŜ ƘŜȄŀŘŜŎƛƳŀƭ ŘƛƎƛǘǎ Ƴŀȅ ōŜ ǘǊŜŀǘŜŘ ŀǎ 

decimal for this conversion). 

¶ Step 2 ҍ /ƻƳōƛƴŜ ŀƭƭ ǘƘŜ ǊŜǎǳƭǘƛƴƎ ōƛƴŀǊȅ ƎǊƻǳǇǎ όƻŦ п ŘƛƎƛǘǎ ŜŀŎƘύ ƛƴǘƻ ŀ ǎƛƴƎƭŜ ōƛƴŀǊȅ ƴǳƳōŜǊΦ 

Example 

IŜȄŀŘŜŎƛƳŀƭ bǳƳōŜǊ ҍ мр16 

/ŀƭŎǳƭŀǘƛƴƎ .ƛƴŀǊȅ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Hexadecimal Number Binary Number 

Step 1 1516 110 510 

Step 2 1516 00012 01012 
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Step 3 1516 000101012 

IŜȄŀŘŜŎƛƳŀƭ bǳƳōŜǊ ҍ мр16 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ млмлм2 

In the coding, when numbers, letters or words are represented by a specific group of symbols, it is said that the number, 

letter or word is being encoded. The group of symbols is called as a code. The digital data is represented, stored and 

transmitted as group of binary bits. This group is also called as binary code. The binary code is represented by the 

number as well as alphanumeric letter. 

Advantages of Binary Code 
Following is the list of advantages that binary code offers. 

¶ Binary codes are suitable for the computer applications. 

¶ Binary codes are suitable for the digital communications. 

¶ Binary codes make the analysis and designing of digital circuits if we use the binary codes. 

¶ Since only 0 & 1 are being used, implementation becomes easy. 

Classification of binary codes 
The codes are broadly categorized into following four categories. 

¶ Weighted Codes 

¶ Non-Weighted Codes 

¶ Binary Coded Decimal Code 

¶ Alphanumeric Codes 

¶ Error Detecting Codes 

¶ Error Correcting Codes 

Weighted Codes 
Weighted binary codes are those binary codes which obey the positional weight principle. Each position of the number 

represents a specific weight. Several systems of the codes are used to express the decimal digits 0 through 9. In these 

codes each decimal digit is represented by a group of four bits. 
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Non-Weighted Codes 
In this type of binary codes, the positional weights are not assigned. The examples of non-weighted codes are Excess-3 

code and Gray code. 

Excess-3 code 

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal numbers. The Excess-3 

code words are derived from the 8421 BCD code words adding (0011)2 or (3)10 to each code word in 8421. The excess-

о ŎƻŘŜǎ ŀǊŜ ƻōǘŀƛƴŜŘ ŀǎ Ŧƻƭƭƻǿǎ ҍ 

 

Example 

 

Gray Code 

It is the non-weighted code and it is not arithmetic codes. That means there are no specific weights assigned to the bit 

position. It has a very special feature that, only one bit will change each time the decimal number is incremented as 
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shown in fig. As only one bit changes at a time, the gray code is called as a unit distance code. The gray code is a cyclic 

code. Gray code cannot be used for arithmetic operation. 

 

Application of Gray code 

¶ Gray code is popularly used in the shaft position encoders. 

¶ A shaft position encoder produces a code word which represents the angular position of the shaft. 

Binary Coded Decimal (BCD) code 
In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express each of the decimal 

digits with a binary code. In the BCD, with four bits we can represent sixteen numbers (0000 to 1111). But in BCD code 

only first ten of these are used (0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in 

BCD. 

 

Advantages of BCD Codes 

¶ It is very similar to decimal system. 

¶ We need to remember binary equivalent of decimal numbers 0 to 9 only. 

Disadvantages of BCD Codes 
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¶ The addition and subtraction of BCD have different rules. 

¶ The BCD arithmetic is little more complicated. 

¶ BCD needs more number of bits than binary to represent the decimal number. So BCD is less efficient than 

binary. 

Alphanumeric codes 
A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is not enough for 

communication between two computers because there we need many more symbols for communication. These 

symbols are required to represent 26 alphabets with capital and small letters, numbers from 0 to 9, punctuation marks 

and other symbols. 

The alphanumeric codes are the codes that represent numbers and alphabetic characters. Mostly such codes also 

represent other characters such as symbol and various instructions necessary for conveying information. An 

alphanumeric code should at least represent 10 digits and 26 letters of alphabet i.e. total 36 items. The following three 

alphanumeric codes are very commonly used for the data representation. 

¶ American Standard Code for Information Interchange (ASCII). 

¶ Extended Binary Coded Decimal Interchange Code (EBCDIC). 

¶ Five bit Baudot Code. 

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly used worldwide while EBCDIC 

is used primarily in large IBM computers. 

Error Codes 
There are binary code techniques available to detect and correct data during data transmission. 

There are many methods or techniques which can be used to convert code from one format to another. We'll 

demonstrate here the following 

¶ Binary to BCD Conversion 

¶ BCD to Binary Conversion 

¶ BCD to Excess-3 

¶ Excess-3 to BCD 

Binary to BCD Conversion 
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Steps 

¶ Step 1 -- Convert the binary number to decimal. 

¶ Step 2 -- Convert decimal number to BCD. 

9ȄŀƳǇƭŜ ҍ ŎƻƴǾŜǊǘ όмммлмύ2 to BCD. 

{ǘŜǇ м ҍ /ƻƴǾŜǊǘ ǘƻ 5ŜŎƛƳŀƭ 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2 

/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Decimal Number 

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10 

Step 2 111012 (16 + 8 + 4 + 0 + 1)10 

Step 3 111012 2910 

.ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2 Ґ 5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 

{ǘŜǇ н ҍ /ƻƴǾŜǊǘ ǘƻ ./5 

5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 

Calculating BCD Equivalent. Convert each digit into groups of four binary digits equivalent. 

Step Decimal Number Conversion 

Step 1 2910 00102 10012 

Step 2 2910 00101001BCD 

Result 

(11101)2 =  (00101001)BCD 

BCD to Binary Conversion 
Steps 
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¶ Step 1 -- Convert the BCD number to decimal. 

¶ Step 2 -- Convert decimal to binary. 

9ȄŀƳǇƭŜ ҍ ŎƻƴǾŜǊǘ όллмлмллмύBCD to Binary. 

Step 1 - Convert to BCD 

./5 bǳƳōŜǊ ҍ όллмлмллмύBCD 

Calculating Decimal Equivalent. Convert each four digit into a group and get decimal equivalent for each group. 

Step BCD Number Conversion 

Step 1 (00101001)BCD 00102 10012 

Step 2 (00101001)BCD 210 910 

Step 3 (00101001)BCD 2910 

./5 bǳƳōŜǊ ҍ όллмлмллмύBCD Ґ 5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 

Step 2 - Convert to Binary 

Used long division method for decimal to binary conversion. 

5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 

/ŀƭŎǳƭŀǘƛƴƎ .ƛƴŀǊȅ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Operation Result Remainder 

Step 1 29 / 2 14 1 

Step 2 14 / 2 7 0 

Step 3 7 / 2 3 1 

Step 4 3 / 2 1 1 

Step 5 1 / 2 0 1 
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As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder 

becomes the least significant digit (LSD) and the last remainder becomes the most significant digit (MSD). 

5ŜŎƛƳŀƭ bǳƳōŜǊ ҍ нф10 Ґ .ƛƴŀǊȅ bǳƳōŜǊ ҍ мммлм2 

Result 

(00101001)BCD = (11101)2 

BCD to Excess-3 
Steps 

¶ Step 1 -- Convert BCD to decimal. 

¶ Step 2 -- Add (3)10 to this decimal number. 

¶ Step 3 -- Convert into binary to get excess-3 code. 

9ȄŀƳǇƭŜ ҍ ŎƻƴǾŜǊǘ όмллмύBCD to Excess-3. 

{ǘŜǇ м ҍ /ƻƴǾŜǊǘ ǘƻ ŘŜŎƛƳŀƭ 

(1001)BCD = 910 

{ǘŜǇ н ҍ Add 3 to decimal 

(9)10 + (3)10 = (12)10 

{ǘŜǇ о ҍ /ƻƴǾŜǊǘ ǘƻ 9ȄŎŜǎǎ-3 

(12)10 = (1100)2 

Result 

(1001)BCD = (1100)XS-3 

Excess-3 to BCD Conversion 
Steps 

¶ Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the corresponding BCD code. 

9ȄŀƳǇƭŜ ҍ ŎƻƴǾŜǊǘ όмллммлмлύXS-3 to BCD. 
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Given XS-3 number  = 1 0 0 1 1 0 1 0  

Subtract (0011)2   = 0 0 1 1 0 0 1 1 

                    -------------------- 

               BCD = 0 1 1 0   0 1 1 1 

Result 

(10011010)XS-3 = (01100111)BCD 

 

Complements are used in the digital computers in order to simplify the subtraction operation and for the logical 

manipulations. For each radix-r system (radix r represents base of number system) there are two types of complements. 

S.N. Complement Description 

1 Radix Complement The radix complement is referred to as the r's complement 

2 Diminished Radix Complement 
The diminished radix complement is referred to as the (r-1)'s 

complement 

Binary system complements 
As the binary system has base r = 2. So the two types of complements for the binary system are 2's complement and 

1's complement. 

1's complement 

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is called as taking complement 

or 1's complement. Example of 1's Complement is as follows. 

 

2's complement 

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit (LSB) of 1's complement of 

the number. 
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2's complement = 1's complement + 1 

Example of 2's Complement is as follows. 

 

Binary arithmetic is essential part of all the digital computers and many other digital system. 

Binary Addition 
It is a key for binary subtraction, multiplication, division. There are four rules of binary addition. 

 

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given column and a carry of 1 

over to the next column. 

9ȄŀƳǇƭŜ ҍ !ŘŘƛǘƛƻƴ 
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Binary Subtraction 
Subtraction and Borrow, these two words will be used very frequently for the binary subtraction. There are four rules 

of binary subtraction. 

 

9ȄŀƳǇƭŜ ҍ {ǳōǘǊŀŎǘƛƻƴ 

 

Binary Multiplication 
Binary multiplication is similar to decimal multiplication. It is simpler than decimal multiplication because only 0s and 

1s are involved. There are four rules of binary multiplication. 

 

9ȄŀƳǇƭŜ ҍ aǳƭǘƛǇƭƛŎŀǘƛƻƴ 
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Binary Division 
Binary division is similar to decimal division. It is called as the long division procedure. 

9ȄŀƳǇƭŜ ҍ 5ƛǾƛǎƛƻƴ 

 

 

 

 

 

Hexadecimal Number System 
Following are the characteristics of a hexadecimal number system. 

¶ Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. 

¶ Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. 

¶ Also called base 16 number system. 

¶ Each position in ŀ ƘŜȄŀŘŜŎƛƳŀƭ ƴǳƳōŜǊ ǊŜǇǊŜǎŜƴǘǎ ŀ л ǇƻǿŜǊ ƻŦ ǘƘŜ ōŀǎŜ όмсύΦ 9ȄŀƳǇƭŜ ҍ мс0 

¶ [ŀǎǘ Ǉƻǎƛǘƛƻƴ ƛƴ ŀ ƘŜȄŀŘŜŎƛƳŀƭ ƴǳƳōŜǊ ǊŜǇǊŜǎŜƴǘǎ ŀƴ Ȅ ǇƻǿŜǊ ƻŦ ǘƘŜ ōŀǎŜ όмсύΦ 9ȄŀƳǇƭŜ ҍ мсx where x 

represents the last position - 1. 

Example 

IŜȄŀŘŜŎƛƳŀƭ bǳƳōŜǊ ҍ мфC5916 
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/ŀƭŎǳƭŀǘƛƴƎ 5ŜŎƛƳŀƭ 9ǉǳƛǾŀƭŜƴǘ ҍ 

Step Binary Number Decimal Number 

Step 1 19FDE16 ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10 

Step 2 19FDE16 ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10 

Step 3 19FDE16 (65536 + 36864 + 3840 + 208 + 14)10 

Step 4 19FDE16 10646210 

bƻǘŜ ҍ 19FDE16 is normally written as 19FDE. 

Hexadecimal Addition 
Following hexadecimal addition table will help you greatly to handle Hexadecimal addition. 

 

To use this table, simply follow the ŘƛǊŜŎǘƛƻƴǎ ǳǎŜŘ ƛƴ ǘƘƛǎ ŜȄŀƳǇƭŜ ҍ !ŘŘ !16 and 516. Locate A in the X column then 

locate the 5 in the Y column. The point in 'sum' area where these two columns intersect is the sum of two numbers. 
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A16 + 516 = F16. 

9ȄŀƳǇƭŜ ҍ !ŘŘƛǘƛƻƴ 

 

Hexadecimal Subtraction 
The subtraction of hexadecimal numbers follow the same rules as the subtraction of numbers in any other number 

system. The only variation is in borrowed number. In the decimal system, you borrow a group of 1010. In the binary 

system, you borrow a group of 210. In the hexadecimal system you borrow a group of 1610. 

Example - Subtraction 

 

 

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. 

It is also called as Binary Algebra or logical Algebra. Boolean algebra was invented by George Boole in 1854. 

Rule in Boolean Algebra 
Following are the important rules used in Boolean algebra. 

¶ Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW. 

¶ Complement of a variable is represented by an overbar (-). Thus, complement of variable B is represented as 

. Thus if B = 0 then = 1 and B = 1 then = 0. 

¶ ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is 

represented as A + B + C. 
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¶ Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. 

Sometime the dot may be omitted like ABC. 

BINARY LOGIS 

  мΩǎ ŀƴŘ лΩǎ  ƻǊ hƴ ƻǊ hŦŦ ƻǊ  IƛƎƘ ƻǊ [ƻǿ ǾƻƭǘŀƎŜ ƭŜǾŜƭǎ 

  A truth table is a diagram that shows all possible logical inputs and their associated outputs. 

Logic gates are circuits that are used to perform a logical operation in computing. 

  Logic gates 

  NOT Gate 

  The NOT gate is the simplest gate used in computing as it has a single input and output that 

perform the following logic: when the input is 0, the output will be 1when the input is 1, the 

output will be 0 

  The OR gate has two or more inputs 

  0 when ALL the inputs are 01 when ANY or ALL inputs are 1 

  AND Gate :  The AND gate has two or more inputs and the output will be:1 when ALL the 

inputs are 1, and 0 when ANY or ALL inputs are 0 0 

   

BOOLEAN ALGEBRA  

  Boolean algebra, like any other deductive mathematical system, may be defined with a set 

of elements, a set of operators, and a number of unproved axioms or postulates.  

  A set of elements is any collection of objects, usually having a common property. If S is a set, 

and x and y are certain objects, then the notation x ɴ  S  means that x is a member of the set 

S and y ɵ  S means that y is not an element of S.  

  A binary operator defined on a set S of elements is a rule that assigns, to each pair of 

elements from S, a unique element from S. As an example, consider the relation 

   a *b = c 
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AXIOMS 

  1. (a) The structure is closed with respect to the operator +. 

   (b) The structure is closed with respect to the operator * .  

  2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.  

  (b) The element 1 is an identity element with respect to * ; that is, x * 1 = 1 * x = x. 

   3. (a) The structure is commutative with respect to +; that is, x + y = y + x.  

  (b) The structure is commutative with respect to * ; that is, x * y = y * x. 

   4. (a) The operator *is distributive over +; that is, x * (y + z) = (x * y) + (x * z).  

  (b) The operator + is distributive over * ; that is, x + (y * z) = (x + y) * (x + z).  

  5. For every element x ɴ B, there exists an element x ɴ B (called the complement of x) such 

that (a) x + xI = 1 and (b) x * xI = 0.  

  6. There exist at least two elements x, y ɴ . ǎǳŎƘ ǘƘŀǘ Ȅ ґ ȅ 

Rule in Boolean Algebra 
Following are the important rules used in Boolean algebra. 

  Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW. 

  Complement of a variable is represented by an overbar (-). Thus, complement of variable B is represented 

as . Thus if B = 0 then = 1 and B = 1 then = 0. 

  ORing of the variables is represented by a plus (+) sign between them. For example ORing of A, B, C is 

represented as A + B + C. 

  Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. 

Sometime the dot may be omitted like ABC. 
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Boolean Laws 

There are six types of Boolean Laws. 

Commutative law 

Any binary operation which satisfies the following expression is referred to as commutative operation. 

 
Commutative law states that changing the sequence of the variables does not have any effect on the 

output of a logic circuit. 

Associative law 

This law states that the order in which the logic operations are performed is irrelevant as their effect is 

the same. 

 

Distributive law 

Distributive law states the following condition. 

 

AND law 

These laws use the AND operation. Therefore they are called as AND laws. 

 

OR law 

These laws use the OR operation. Therefore they are called as OR laws. 

 

INVERSION law 

This law uses the NOT operation. The inversion law states that double inversion of a variable results in 

the original variable itself. 
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De Morgan theorem 

(a) όȄҌȅύΩ Ґ ȄΩȅΩ 

όōύ  όȄȅύΩ Ґ ȄΩҌȅΩ 

 

Postulates and Theorems of Boolean Algebra 
 

Postulate 2 (a) x+0 = x (b) x.1 = x 

Postulate 5 όŀύ ȄҌȄΩ Ґ м όōύ ȄΦȄΩ Ґ л 

Theorem 1 (a) x+x = x (b) x.x = x 

Theorem 2 (a) x+1 = 1 (b) x.0 = 0 

Theorem3, involution      όȄΩύΩ Ґ Ȅ 

 

Postulate3, commutative (a)  x+y = y+x (b) xy = yx 

Theorem4, associative (a) x+(y+z)=(x+y)+z (b) x(yz) = (xy)z 

Postulate4, distributive (a) x(y+z)=xy+xz (b) x+yz = (x+y)(x+z) 

Theorem5, DeMorgan όŀύ όȄҌȅύΩ Ґ ȄΩȅΩ όōύ όȄȅύΩ Ґ ȄΩҌȅΩ 

Theorem6, absorption (a) x+xy = x (b) x(x + y) =x 

 

Minterm or a Standard Product 

n variables forming an AND term provide 2n possible combinations, called minterms or standard 

products (denoted as m1, m2 etc.). 

Variable primed if a bit is 0 
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Variable unprimed if a bit is 1 

Maxterm or a Standard Sum 

n variables forming an OR term provide 2n possible combinations, called maxterms or standard sums (denoted as  

M1,M2 etc.). 

Variable primed if a bit is 1 

Variable unprimed if a bit is 0 

MINTERMS AND MAXTERMS FOR THREE BINARY VARIABLES 

MINTERMS MAXTERMS 

x y z Term Designation Term Designation 

0 0 0 ȄΩȅΩȊΩ m0  x+y+z M0  

0 0 1 ȄΩȅΩȊ m1  ȄҌȅҌȊΩ M1  

0 1 0 ȄΩȅȊΩ m2  ȄҌȅΩҌȊ M2  

0 1 1 ȄΩȅȊ m3  ȄҌȅΩҌȊΩ M3  

1 0 0 ȄȅΩȊΩ m4  ȄΩҌȅҌȊ M4  

1 0 1 ȄȅΩȊ m5  ȄΩҌȅҌȊΩ M5  

1 1 0 ȄȅȊΩ m6  ȄΩҌȅΩҌȊ M6  

1 1 1 xyz m7  ȄΩҌȅΩҌȊΩ M7  
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LOGIC GATES  

Logic gates are the basic building blocks of any digital system. It is an electronic circuit having one or more than one 

input and only one output. The relationship between the input and the output is based on a certain logic. Based on 

this, logic gates are named as AND gate, OR gate, NOT gate etc. 

AND Gate 
A circuit which performs an AND operation is shown in figure. It has n input (n >= 2) and one output. 

 

Logic diagram 

 

Truth Table 

 

OR Gate 
A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one output. 
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Logic diagram 

 

Truth Table 

 

NOT Gate 
NOT gate is also known as Inverter. It has one input A and one output Y. 

 

Logic diagram 

 

Truth Table 

 

NAND Gate 
A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one output. 
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Logic diagram 

 

Truth Table 

 

NOR Gate 
A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one output. 

 

Logic diagram 

 

Truth Table 

 

XOR Gate 
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XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-OR 

gate is abbreviated as EX-OR gate or sometime as X-OR gate. It has n input (n >= 2) and one output. 

 

Logic diagram 

 

Truth Table 

 

XNOR Gate 
XNOR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-NOR gate 

is abbreviated as EX-NOR gate or sometime as X-NOR gate. It has n input (n >= 2) and one output. 

 

Logic diagram 

 

Truth Table 
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Part A Questions 
 
1. Draw the logic symbols and truth table of NAND and NOR gates  
2. What is the BCD equivalent of 45610  
3. If 1435 = X6, then X is  
4. Minimum number of two input NAND gates required to implement Y = A + B C 
5. State and prove De-aƻǊƎŀƴΩǎ ǘƘŜƻǊŜƳ  
6. What do you understand by universal gate  
тΦ /ƻƴǾŜǊǘ ǘƘŜ ƎƛǾŜƴ Ŝǉǳŀǘƛƻƴ ¸Ґ!.Ҍ!/ΩҌ./ ƛƴǘƻ ǎǘŀƴŘŀǊŘ {ht ŦƻǊƳ  
уΦ wŜŘǳŎŜ !ϥ.ϥ/ϥ Ҍ !ϥ./ϥ Ҍ !Ω./ 
9. Simplify the following expression Y Ґ ό! Ҍ .ύ ό! Ҍ /Ωύ ό.ϥ Ҍ /Ωύ 
10. Define duality property 
11. Find the complement of the functions F1 = x'yz' + x'y'z and F2 = x (y'z' + yz).By applying De-
Morgan's theorem. 
12. What is a Logic gate? 
13. State the associative property of boolean algebra 
14. wŜŘǳŎŜ !. Ҍ ό!/ύϥ Ҍ !.Ω/ ό!. Ҍ /ύ 
15. Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC 
16. Convert the given expression in canonical SOP form Y = AC + AB + BC. 
мтΦ {ƛƳǇƭƛŦȅ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŜȄǇǊŜǎǎƛƻƴ ¸ Ґ ό! Ҍ .ύ ό! Ҍ /Ωύ ό.ϥ Ҍ /Ωύ 
18. What is the Hexadecimal equivalent of 11100101102 
19. Draw the logic symbols of EX-NOR and EX-OR gates and its truth table. 
20. Prove A(A'+B)=AB 
21. Convert the following numbers with the given radix to decimal. i) (4433)5 ii) (1199)12 
ннΦ {ǘŀǘŜ ŀƴŘ ǇǊƻǾŜ 5Ŝ aƻǊƎŀƴΩǎ ǘƘŜƻǊŜƳΦ Define encoder? List out the applications of it?  
23. What are the basic operations in Boolean algebra?  
24. A computer has a word length of 9 bits including sign. If 2's complement is used to 
represent negative numbers, what range of integers can be stored in computer? Express your 
answer in hexadecimal. October/November - 2018  
нрΦ CŀŎǘƻǊ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŜȄǇǊŜǎǎƛƻƴ ǘƻ ƻōǘŀƛƴ ŀ ǇǊƻŘǳŎǘ ƻŦ ǎǳƳǎ ·¸Ҍ½Ω²Ω October/November - 
2018  
26. Draw 4-variable K-map and define pair, quad and octet. October/November - 2018  
27. Convert the following (i) (AB)16 = (___)10 (ii) (1234)8 =(____)10  May 1019 
нуΦ CƛƴŘ ǘƘŜ нΩǎ ŎƻƳǇƭŜƳŜƴǘ ŀƴŘ мΩǎ ŎƻƳǇƭŜƳŜƴǘ ƻŦ млммлм May 1019 
29. Convert the following expression SOP into POS (AB + C) (B+ClD). May 1019 
30.What are the Universal gates? Why they called as universal gates. May 1019 

31.Given that (292)10 = (1204)b, determine b. October/November - 2019  
32. List out the postulates used in Boolean algebra. October/November - 2019  
33. ²Ƙŀǘ ŀǊŜ ǘƘŜ ŘƻƴΩǘ ŎŀǊŜ ŎƻƴŘƛǘƛƻƴǎ ƻŦ ŀ .ƻƻƭŜŀƴ ŦǳƴŎǘƛƻƴΚ October/November - 2019  
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Part B Questions 
 
1. (a)  Convert the following decimal numbers into binary, octal and hexadecimal. 
           May 2013 
(i) 255 (ii) 1023 (iii) 65,535 (iv) 4097 
нΦ όŀύ  tǊƻǾŜ ǳǎƛƴƎ 5Ŝ aƻǊƎŀƴΩǎ ǘƘŜƻǊŜƳǎ ǘƘŀǘ ·ƻw ŀƴŘ ·bƻw ŀǊŜ ŎƻƳǇƭŜƳŜƴǘǎ ǘƻ ŜŀŎƘ ƻǘƘŜǊ 
(b) Prove that if a and b are switching variables then prove that a+b= a xor b xor c 
3. (a) Convert the following to Decimal and then to Hexadecimal. ( i) 12348 (ii) 110011112  Dec 
2014 
b) Find the complement of the following Boolean function and reduce into minimum number 
ƻŦ ƭƛǘŜǊŀƭǎΦ ¸Ґ ./ΩҌ!Ω5ύό5.ΩҌ/5Ω 
4. (i) Convert (1126.148)10 to hexadecimal. May 2013 
(ii) Convert (10011.1101)2 to decimal. 
(iii) Convert (11001111.01101001)2 to octal. 
(iv) Convert (789.0123)8 to binary. 
рΦ όŀύ hōǘŀƛƴ ǘƘŜ ǘǊǳǘƘ ǘŀōƭŜ ŦƻǊ ǘƘŜ ŦǳƴŎǘƛƻƴ C Ґ Ȅȅ Ҍ ȄȅΩ Ҍ ȅΩȊ  5ŜŎ 2014 
(b) Prove that the sum of all minterms of a Boolean function for three variables is 1. 
сΦ ŀύ tŜǊŦƻǊƳ ǘƘŜ ǎǳōǘǊŀŎǘƛƻƴ ǳǎƛƴƎ мΩǎ ŎƻƳǇƭŜƳŜƴǘ ŀƴŘ нΩǎ ŎƻƳǇƭŜƳŜƴǘ ƳŜǘƘƻŘǎΦ ƛύ ммлмл ς 
10000 ii) 11010 ς 1101 iii) 100 - 110000 b) How are negative numbers represented? Represent 
signed numbers from +7 to -8 using different ways of representation. (7M) 
 7.  a) Reduce using mapping the following expression and implement the real minimal 
ŜȄǇǊŜǎǎƛƻƴ ƛƴ ¦ƴƛǾŜǊǎŀƭ ƭƻƎƛŎΦ CҐ ңƳ όлΣ нΣ пΣ сΣ тΣ уΣ млΣ мнΣ мо, 15)  (7M)  Oct/Nov ς 2017 
8. (a) Convert the following numbers to Octal: (i) (1011.1010)2 (ii) (BABA)16 
 ōύ tŜǊŦƻǊƳ ǘƘŜ ōƛƴŀǊȅ ǎǳōǘǊŀŎǘƛƻƴ ǳǎƛƴƎ мΩǎ ŀƴŘ нΩǎ ŎƻƳǇƭŜƳŜƴǘ ƳŜǘƘƻŘǎΦ όммллммύн-
(1110011)2 Oct/Nov - 2017 
9. a) Convert the given Boolean function into standard sum of minterms form. F = x'y+y'z+xz 
 b) Explain the theorems and properties of Boolean algebra. Oct/Nov ς 2017 
10. How are negative numbers represented? Represent signed numbers from +7 to -8 using 
different ways of representation.    (8M)    October/November - 2018  

11. tŜǊŦƻǊƳ ǘƘŜ ǎǳōǘǊŀŎǘƛƻƴ ǳǎƛƴƎ нΩǎ ŎƻƳǇƭŜƳŜƴǘ ƳŜǘƘƻŘΦ όƛύммлмл ς 10100 (ii)11010 ς 
1101.10 (iii)110 ς 110000  (6M)       October/November - 2018  

12.  a) Simplify each of the following expressions 
 i) ab +a'bc' +bc  
ƛƛύόŀōϥ ҌŎύ όŀ ҌōΩύŎ 
 ƛƛƛύŀōϥ ҌŎ ҌόŀϥҌōύŎΩ October/November - 2018  
13. Find both the Minterm expansion and Maxterm expansion for the following function using 
ŀƭƎŜōǊŀƛŎ ƳŀƴƛǇǳƭŀǘƛƻƴǎ Ŧ ό·Σ¸Σ½Σ²ύ Ґ·¸ Ҍ·Ω½²          October/November - 2018  
14. ) Find the minimum sum-of-ǇǊƻŘǳŎǘǎ ŜȄǇǊŜǎǎƛƻƴ ŦƻǊ Ŧ όȄΣȅΣȊΣǿύ Ґң Ƴ όмΣнΣпΣмрύ Ҍң ŘόлΣоΣмпύ 
using K -map           October/November - 2018  
15. Make a K-map for the function f (x,y,z,w) =xy +xz' +z +xw +xy'z +xyz and realize the 
minimized expression using NAND gates only.         October/November ς 2018 
16. The binary numbers listed have a sign bit in the leftmost position and if negative numbers 
ŀǊŜ ƛƴ нΩǎ ŎƻƳǇƭŜƳent form. Perform the arithmetic operations indicated and verify the 
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answers. (i) 101011 + 111000 (ii) 001110 + 110010 (iii) 111001 ς 001010 (iv) 101011 ς 100110  
May 2019 
17. Convert the following to Decimal and then to octal. (i) (125F)16 (ii) (10111111)2(iii) 
(4234)10  May 2019 
18. Convert the following numbers. i) (10101100111.0101)2 to Base 10. ii) (153.513)10 to base 
8. (7M) October/November - 201 
19. Discuss the subtraction of two numbers using radix complement and diminished radix 
complement forms. October/November ς 2019 
Simplify the following using K-map method in SOP and POS forms. 
Cό!Σ.Σ/Σ5Σ9ύҐңόлΣнΣпΣсΣфΣммΣмоΣмрΣмтΣнмΣнрΣнтΣнфΣом 
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UNIT II 

Gate Level Minimization: 
 
Introduction 

 
 
 
The Karnaugh map (or K-map) is a visual way of detecting redundancy in the SoP. 

 
The K-map can be easily used for circuits with 2, 3, or 4 inputs. 
 
 
It consists of an array of cells, each representing a possible combination of inputs.  

ω ¢ƘŜ ŎŜƭƭǎ ŀǊŜ ŀǊǊŀƴƎŜŘ ǘƻ ǘƘŀǘ ŜŀŎƘ ŎŜƭƭΩǎ ƛƴǇǳǘ ŎƻƳōƛƴŀǘƛƻƴ ŘƛŦŦŜǊǎ ŦǊƻƳ 

adjacent cells by only a single bit.   
ω This is called Gray code ordering ς it ensures that physical neighbours is the 

array are logical neighbou rs as well. (In other words, neighbouring bit 

patterns are nearly the same, differing by only 1 bit). 

 

Map Method  
 

  Gate-level minimization is the design task of finding an optimal gate-level 
implementation of the Boolean functions describing a digital circuit.  

  This task is well understood, but is difficult to execute by manual methods when the 
logic has more than a few inputs. 

   Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean 
equations efficiently and quickly.  

  The truth table representation of a function is unique, when it is expressed 
algebraically it can appear in many different, but equivalent, forms. 

   Boolean expressions may be simplified by algebraic means. 

   However, this procedure of minimization is awkward because it lacks specific rules to 
predict each succeeding step in the manipulative process. 

   The map method  provides a simple, straightforward procedure for minimizing Boolean 
functions. This method may be regarded as a pictorial form of a truth table. The map 
method is also known as the Karnaugh map or K-map . 
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K MAP 
 

  A K-map is a diagram made up of squares, with each square representing one minterm 
of the function that is to be minimized.  

  The simplified expressions produced by the map are always in one of the two standard 
forms: sum of products or product of sums. 

   It will be assumed that the simplest algebraic expression is an algebraic expression 
with a minimum number of terms and with the smallest possible number of literals in 
each term.  

  This expression produces a circuit diagram with a minimum number of gates and the 
minimum number of inputs to each gate.  

 
 

 
Consider the following arrangements of cells: 
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2-input     3-input      
              

ŀΩϪ ōΩ  ŀΩϪ ō   ŀΩϪ ōΩϪ ŎΩ ŀΩϪ ōΩϪ Ŏ  ŀΩϪ ō Ϫ Ŏ ŀΩϪ ō Ϫ ŎΩ 

00 01   000  001   011  010 
             

ŀ Ϫ ōΩ  a @ b   ŀ Ϫ ōΩϪ ŎΩ ŀ Ϫ ōΩϪ Ŏ  a @ b @ c ŀ Ϫ ō Ϫ ŎΩ 

10 11   100  101   111  110 
               

  4-input            
         

  ŀΩϪōΩϪŎΩϪŘΩ ŀΩϪōΩϪŎΩϪŘ  ŀΩϪōΩϪŎϪŘ ŀΩϪōΩϪŎϪŘΩ   

  0000 0001  0011   0010   
          

  ŀΩϪōϪŎΩϪŘΩ ŀΩϪōϪŎΩϪŘ  ŀΩϪōϪŎϪŘ  ŀΩϪōϪŎϪŘΩ   

  0100 0101  0111   0110   
           

  ŀϪōϪŎΩϪŘΩ ŀϪōϪŎΩϪŘ  a@b@c@d   ŀϪōϪŎϪŘΩ   

  1100 1101  1111   1110   
          

  ŀϪōΩϪŎΩϪŘΩ ŀϪōΩϪŎΩϪŘ  ŀϪōΩϪŎϪŘ  ŀϪōΩϪŎϪŘΩ   

  1000 1001  1011   1010   
               

 

The cells are arranged as above, but we write them empty, like this: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note that the numbers are not in binary order, but are arranged so that only a single bit 

changes between neighbours. 
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This one-bit change applies at the edges, too. So cells in the same row on the left and right 

edges of the array also only differ by one bit. 

 
Note: The value of a particular cell is found by combining the numbers at the edges 

of the row and column. 
 
 
 
 
 
 
 
 
 
 
 

 
Also, in general, it is easier to order the inputs to a K-map so that they can be read like 

a binary number. (Show example.) 

 
So, we have this grid.  What do w e do with it?  

ω We put 1's in all the cells that represent minterms in the SSoP . (In other 

w ords, we find the 1's in the truth table output, and put 1's in the cells 

corresponding to the same inputs.)  

 
[ŜǘΩǎ Řƻ ǘƘƛǎ ƛƴ ǊŜƭŀǘƛƻƴ ǘƻ ǘƘŜ н-input multiplexer example: 

 

S A B Y  
     

0 0 0 0  
 

0 1 

  

0 0  
 

1 0 

  

0 1  
 

1 1 

  

0 1  
 

0 0 

  

1 0  
 

0 1 

  

1 1  
 1 0   
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1 0  
     

 
1     1        1           1 
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If there are tw o neigh bouring 1's in the grid, it means that the input bit change between the 

tw o cells has no effect on the output, and thu s there is redundancy. This leads to a basic 

strategy. 

 
Basic Strategy:  
Group adjacent 1's together in square or rectangular groups of 2, 4, 8, or 16, such that the total 

number of groups and isolated 1's is minimized, while using as large groups as possible. Groups 

may overlap, so that a particular cell may be included in more than one group. 

 
(Recall that adjacency wrap s around edges of grid.) 
 
 
Applying this to the multiplexer example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, considering the best option above (i), notice the following:  

1. B changes but the ƻǳǘǇǳǘ ŘƻŜǎƴΩǘΣ ǎƻ . ƛǎ ǊŜŘǳƴŘant in this group (See 

comment 1, below).   
2. A changes but the ƻǳǘǇǳǘ ŘƻŜǎƴΩǘΣ ǎƻ ! ƛǎ ǊŜŘǳƴŘant in this group (See 

comment 2, below).  
 
(1.) 

 
 
 
 

 

(2.) 
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So, we write out Boolean expressions for each group, leaving out the redundant elements. That 

ƛǎΣ ŦƻǊ ŜŀŎƘ ƎǊƻǳǇΣ ǿŜ ǿǊƛǘŜ ƻǳǘ ǘƘŜ ƛƴǇǳǘǎ ǘƘŀǘ ŘƻƴΩǘ ŎƘŀƴƎŜΦ 

 
¢ƘŜ ƳǳƭǘƛǇƭŜȄŜǊ ŜȄŀƳǇƭŜΣ ǿƛǘƘ ǘǿƻ ƎǊƻǳǇǎΣ ƎƛǾŜǎ ǳǎ ǘǿƻ ǘŜǊƳǎΣ ¸ Ґ {Ϫ. Ҍ {ΩϪ!  
which is the same as what we achieved through using Boolean algebra to reduce the circuit. 

 
So, we can summarize this process into a basic set of rules: 
 
 
Rules for K-Maps  

1. Each cell with a 1 must be included in at least one group.   
2. Try to form the largest possible groups.   
3. Try to end up with as few groups as possible.   
4. Groups may be in sizes that are powers of 2: 2 0 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 

...   
5. Groups may be square or rectangular only (including wrap-around at the grid 

edges). No diagonals or zig-zags can be used to form a group.   
6. The larger a group is, the more redundant inputs there are:   

i. A group of 1 has no redundant inputs.   
ii. A group of 2 has 1 redundant input.   
iii. A group of 4 has 2 redundant inputs.   
iv. A group of 8 has 3 redundant inputs.   
v. A group of 16 has 4 redundant inputs.  

 

The following simple examples illustrate rule 6 above. 
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Examples 
 
 

2-input Example 

 

A B Y 
 

    

0 0 1 
 

 

1 

  

0 1 
 

 

0 

  

1 1 
 

 

1 

  

1 0 
 

    

 

5ƛǊŜŎǘ ŦǊƻƳ ǘǊǳǘƘ ǘŀōƭŜΥ ¸ Ґ !Ω.Ω Ҍ !Ω. Ҍ !.Ω 
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3-input Example 

 

A B C Y 
 

     

0 0 0 0 
 

 

0 1 

  

0 0 
 

 

1 0 

  

0 1 
 

 

1 1 

  

0 1 
 

 

0 0 

  

1 1 
 

 

0 1 

  

1 0 
 

 

1 0 

  

1 1 
 

 

1 1 

  

1 1 
 

     

 

5ƛǊŜŎǘ ŦǊƻƳ ǘǊǳǘƘ ǘŀōƭŜΥ ¸ Ґ !Ω./Ω Ҍ !Ω./ Ҍ !.Ω/Ω Ҍ !./Ω Ҍ !./ 
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4-input Example   
 

     
 

A B C D Y 
 

      

0 0 0 0 1 
 

 

0 0 1 

  

0 0 
 

 

0 1 0 

  

0 1 
 

 

0 1 1 

  

0 0 
 

 

1 0 0 

  

0 0 
 

 

1 0 1 

  

0 1 
 

 

1 1 0 

  

0 0 
 

 

1 1 1 

  

0 1 
 

 

0 0 0 

  

1 1 
 

 

0 0 1 

  

1 0 
 

 

0 1 0 

  

1 1 
 

 

0 1 1 

  

1 0 
 

 

1 0 0 

  

1 0 
 

 

1 0 1 

  

1 1 
 

 

1 1 0 

  

1 1 
 

 

1 1 1 

  

1 1 
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use a K-map to reduce the following 4-input circuit.  

 

A B C D Y 
 

      

0 0 0 0 1 
 

 

0 0 1 

  

0 0 
 

 

0 1 0 

  

0 1 
 

 

0 1 1 

  

0 0 
 

 

1 0 0 

  

0 1 
 

 

1 0 1 

  

0 1 
 

 

1 1 0 

  

0 1 
 

 

1 1 1 

  

0 1 
 

 

0 0 0 

  

1 1 
 

 

0 0 1 

  

1 0 
 

 

0 1 0 

  

1 1 
 

 

0 1 1 

  

1 0 
 

 

1 0 0 

  

1 1 
 

 

1 0 1 

  

1 1 
 

 

1 1 0 

  

1 1 
 

 

1 1 1 

  

1 1 
 

      


